EERC. UND UNIVERSITY OF NORTH DAKOTA.

ADVANCED COAL-FIRED POWER CYCLES

Presented at the 54th Annual Minnesota Power Systems Conference St. Paul, MN November 6–8, 2018

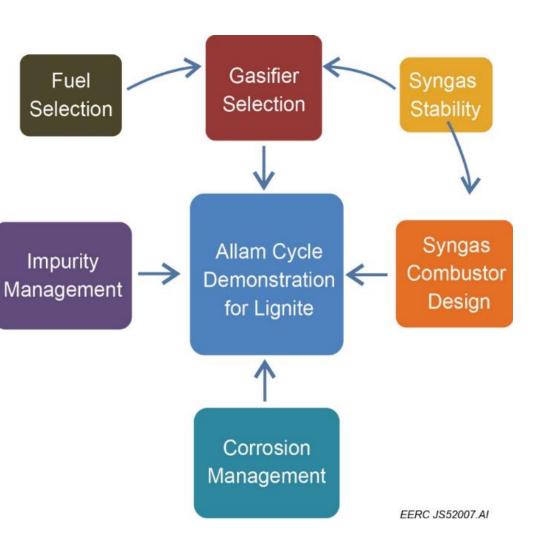
> Jason Laumb Principal Engineer Advanced Energy Systems Group Lead

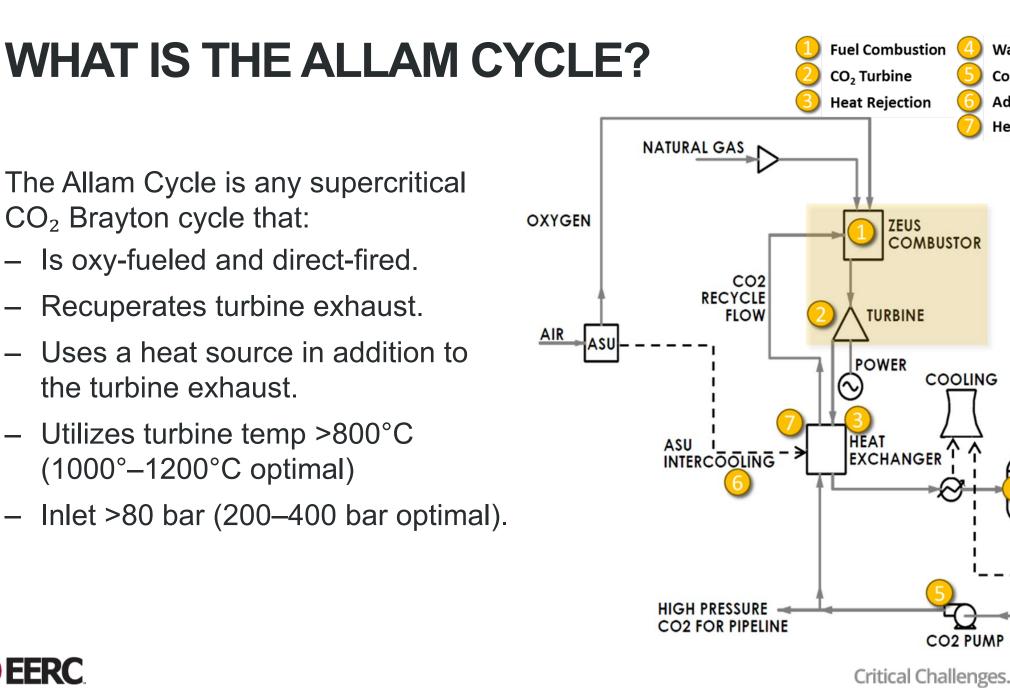
> > Critical Challenges. Practical Solutions.

© 2018 University of North Dakota Energy & Environmental Research Center.

ENERGY & ENVIRONMENTAL RESEARCH CENTER (EERC)

- Nonprofit branch of the University of North Dakota focused on energy and environmental solutions.
- More than 254,000 square feet of state-of-the-art laboratory, demonstration, and office space.





OUTLINE

- Industry Need
- What Is the Allam Cycle?
 - History
 - Benefits
- Coal-Based Allam Cycle
 - Overview
 - Technology Development Activities
- Future Work

Water Separation

Compression and Pumping

Additional Heat Input

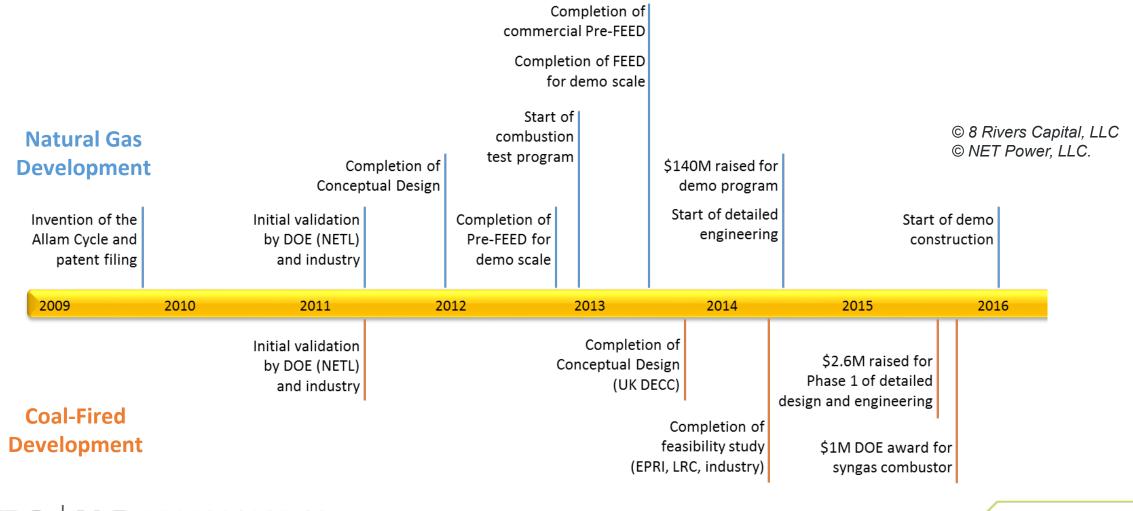
CO2

WATER SEPARATOR

H2O

COMPRESSOR

Practical Solutions.


Heat Recuperation

COOLING

CO2 PUMP

THE ALLAM CYCLE IS BEING ACTIVELY COMMERCIALIZED

Critical Challenges. Pra

Practical Solutions.

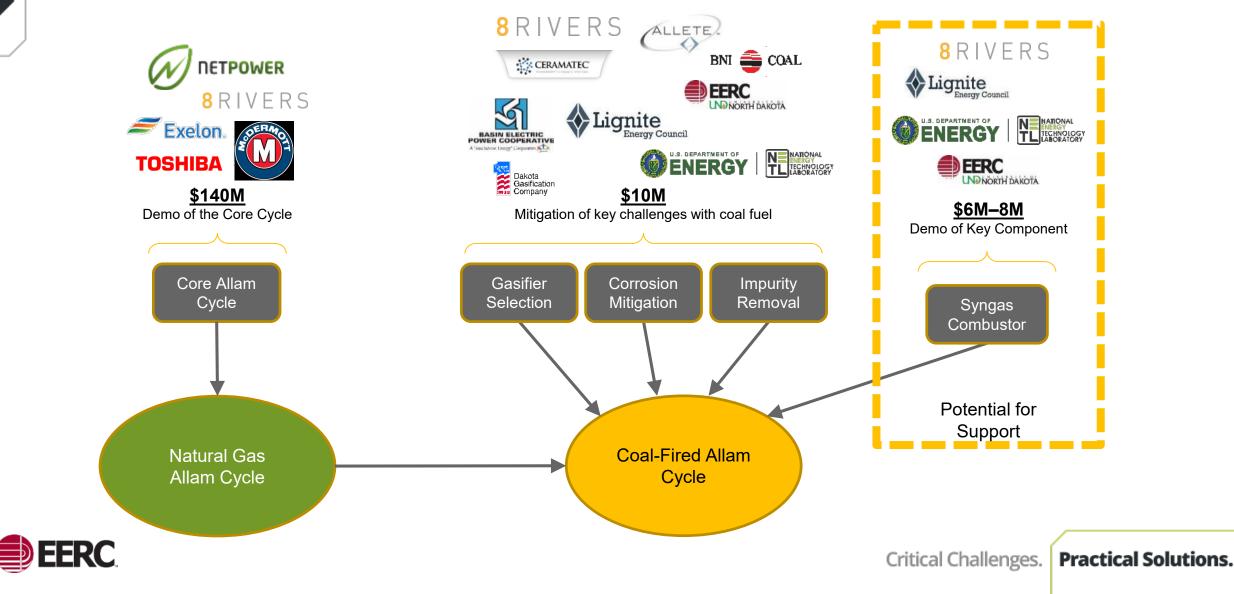
CORE NATURAL GAS ALLAM CYCLE DEMONSTRATION BY NET POWER

50-MWth natural gas demonstration plant located in La Porte, Texas.

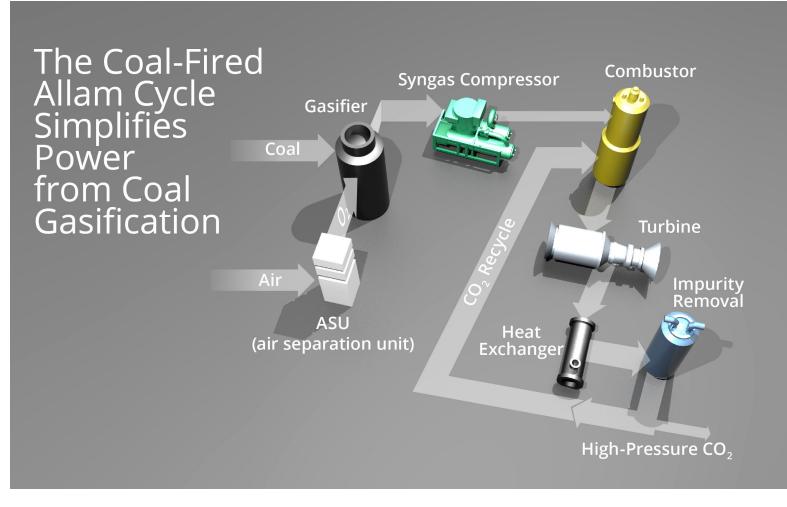
- Commissioning has begun.
- First fire in May 2018.
- Will test performance, reliability, controllability, and safety.

300-MWe commercial plant under development.

- Pre-FEED study completed on commercial plant.
- Beginning FEED and early development work.



© 8 Rivers Capital, LLC Critical Challen



ONGOING ALLAM CYCLE DEVELOPMENT OVERVIEW

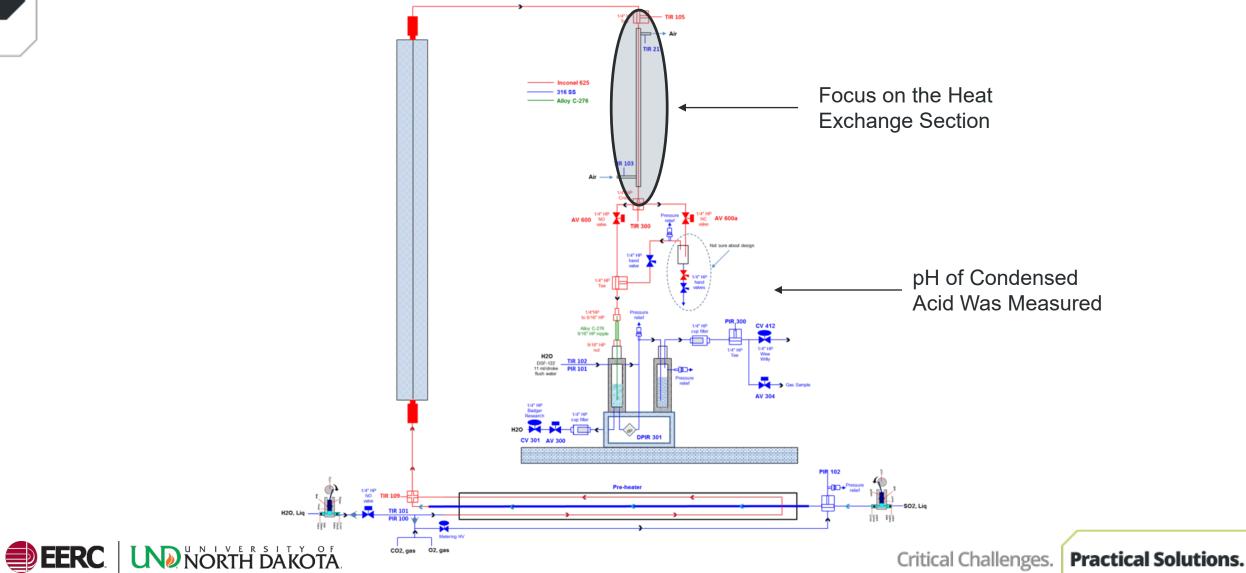
KEY AREAS REQUIRED TO MITIGATE ADDITIONAL RISKS FOR COAL

- Metallurgy/corrosion
- Gasifier selection
- Gas cleanup
- Syngas combustor

CORROSION

FINAL FUEL SPECIFICATION

	Average	Maximum	Minimum
Proximate Analysis, as-received, wt%			
Moisture	37.5	40.0	35.0
Volatile Matter	26.0	31.0	21.0
Fixed Carbon	28.5	23.5	33.5
Ash	8.0	12.0	6.0
Ultimate Analysis, as-received, wt%			
Carbon	42.0	55.0	32.0
Hydrogen	7.0	8.0	6.0
Nitrogen	0.7	0.9	0.5
Sulfur	1.0	1.5	0.5
Oxygen	41.3	50.0	40.0
Ash Composition, wt% as oxides			
SiO ₂	25.0	35.0	15.0
Al ₂ O ₃	10.0	20.0	5.0
Fe ₂ O ₃	10.0	20.0	5.0
TiO ₂	0.5	1.0	0.1
P ₂ O ₅	0.5	1.0	0.1
CaO	22.0	32.0	12.0
MgO	6.0	11.0	1.0
Na ₂ O	5.0	7.0	2.0
K₂O	1.0	2.0	0.2
SO ₃	20.0	30.0	10.0
Higher Heating Value			
As-Received, Btu/Ib	6600	7200	5800



LOW PRESSURE/LOW TEMPERATURE

DYNAMIC CORROSION TESTING – LOW PRESSURE/LOW TEMPERATURE

HEAT EXCHANGER

- Inconel 625 tubing.
- Two tests performed at 30 bar (435 psi) pressure.
- Both tests experienced tubing plugs in less than 50 hours.
- Physical plug occurred at the top of the heat exchanger.
- Sulfur attack seen throughout system.

Test Gas Compositions

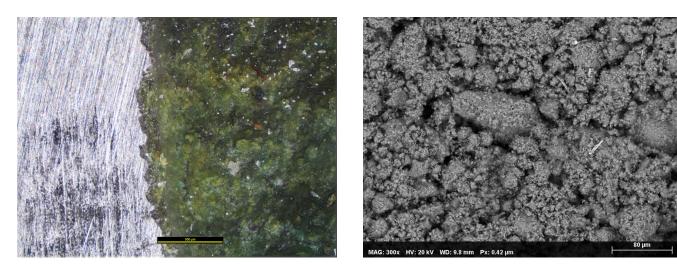
EERC NORTH DAKOTA

	SO ₂	H ₂ O	O ₂	NO	CO ₂	
Test 1	600 ppm	2%	1%	40 ppm	Balance 🗖	=
Test 2	600 ppm	2%	1%	20 ppm	Balance	

Gas

Flow

393°C (740°F)


Critical Challenges.

Practical Solutions.

COMPOSITIONS

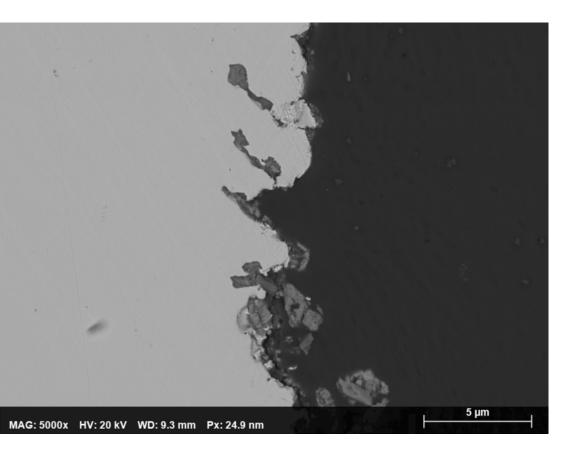
	0	Al	Si	S	Ti	Cr	Fe	Ni	Ni/Cr	Cr/Fe	Ni/Fe
Plug Material	52.0	0.02	0.07	16.6	0.07	5.23	1.05	24.8	1.49	5.00	23.7
Alloy 625	_	< 0.40	< 0.50	< 0.015	< 0.40	20.0-	< 5.0	>58.0	>2.52	<4.60	>11.6
						23.0					

Average Composition (wt%) of the Plug Material and Base Alloy

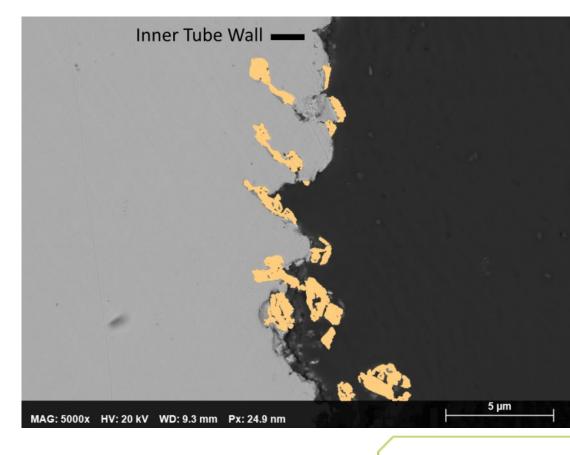
Bar is 0.5 mm long (0.02 inches).

Bar is 0.08 mm long (0.003 inches).

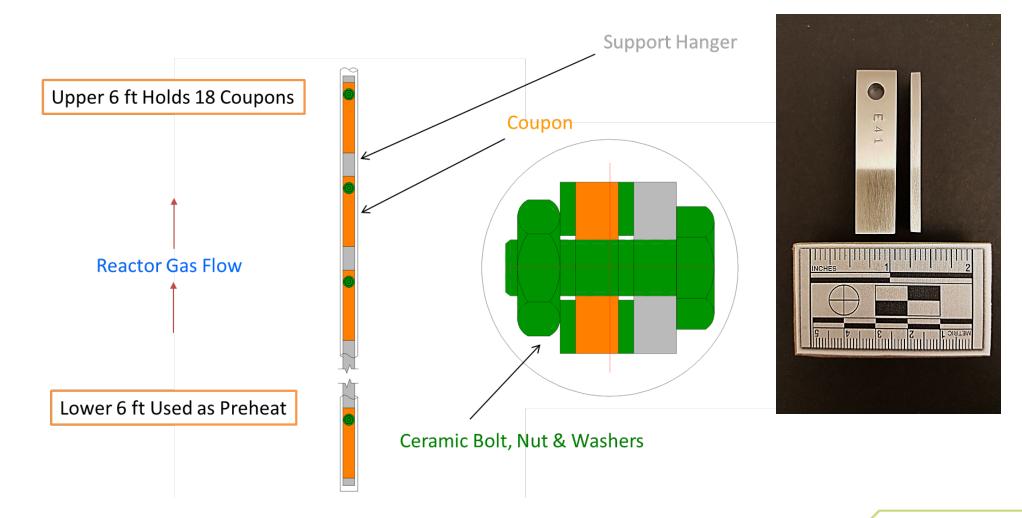
Condensed Liquid Analytical Results


Element/Compound	Concentration, mg/L
Chromium	2700
Iron	670
Nickel	7490
Nitrate	<100
Nitrite	<100
Sulfate	143,000
Nickel/Chromium Ratio	2.77
Chromium/Iron Ratio	4.03
Nickel/Iron Ratio	11.2
	0

Measured pH was below 1.0.


TUBING SECTION EXPOSED TO 700°F – PLUGGED AREA

• SEM Micrograph



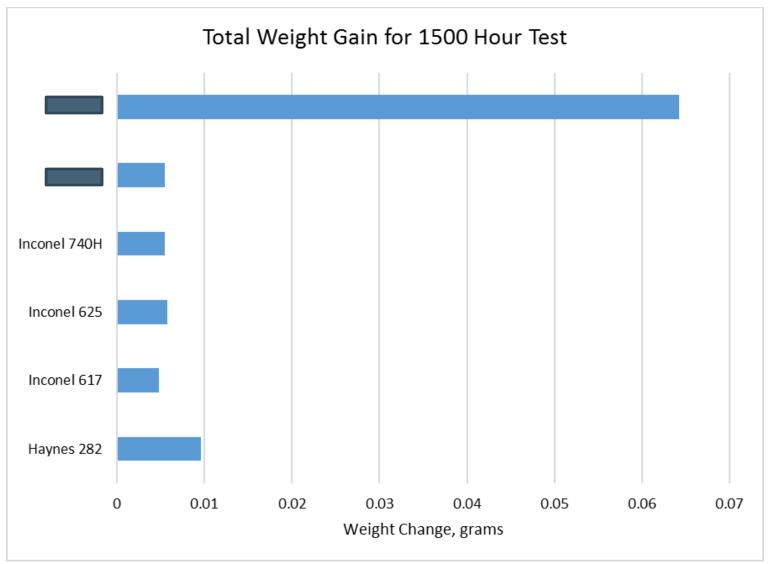
 SEM Micrograph Showing Presence of Sulfur Species – Colored Areas

HIGH-PRESSURE/HIGH-TEMPERATURE PRECOMBUSTION SULFUR REMOVAL

INCONEL REACTOR

Critical Challenges. Pract

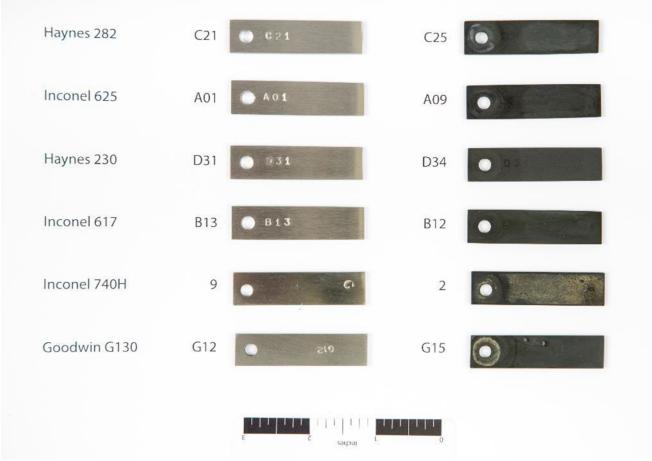
Practical Solutions.


ALLOYS BEING TESTED IN REACTOR – HIGH PRESSURE/HIGH TEMPERATURE

Alloy	Cr	Ni	Fe	Мо	Со	Al	Nb+Ta
G130	24.0–26.0	Balance	1.5 max.	0.5 max.	18.0-22.0	1.0–1.6	0.75 max.
740H	23.5–25.5	Balance	3.0 max.	2.0 max.	15.0-22.0	0.2–2.0	0.5–2.5
617	20.0–24.0	Balance	3.0 max.	8.0–10.0	10.0-15.0	1.5 max.	_
230	20.0–24.0	Balance	3.0 max.	1.0-3.0	5.0 max.	0.2–0.5	_
625	20.0-23.0	Balance	5.0 max.	8.0–10.0	1.0 max.	0.4 max.	3.2–4.2
282	18.5–20.5	Balance	1.5 max.	8.0–9.0	9.0–11.0	1.38–1.65	

- Selection based on results of prior testing.
- 1500-hour test.
- 269 bar (3900 psi) pressure, 750°C (1383°F).

HIGH-PRESSURE/TEMPERATURE RESULTS



Critical Challenges. Pract

Practical Solutions.

CORROSION SUMMARY

- Precombustion sulfur removal will be necessary.
- Materials exist that will survive nominal Allam Cycle conditions.
- Selective acid condensation will need to be monitored.

GASIFIER SELECTION

TASK 2 – GASIFIER SELECTION

- Gasifier selection will impact all areas of the Allam Cycle.
- Lignite fuel spec developed.
- Selection process.
- Systems modeled.

SELECTION CRITERIA

- Selection of a suitable gasifier is highly dependent on two key aspects:
 - Ability to gasify North Dakota lignite

- Integration with the overall Allam Cycle
- Team ranked gasifiers based on these performance criteria.

GASIFIER SELECTION

The team ranked 22 gasification systems and narrowed the list down to four.

22 Systems Initially Considered

No.	Gasifier Name	Commercial Readiness	Operational History with Lignite	Applicability to Lignite	Notional Cost	Thermal Integration	System Reliability	Total Score	Rank
1	SCGP	4.6	1.7	3.4	1.5	4.3	3.5	18.9	10
2	SFG	4.3	1.5	3.6	1.8	4.3	3.8	19.2	8
3	OMB Slurry	4.8	1	1.3	4.8	2.8	4.3	18.9	9
4	OMB Dry	3.6	2	3.5	4.5	4	4.3	21.9	4
5	MHI	2.4	0.7	3.2	3	3.3	2	14.6	18
6	Prenflo	3.3	1.2	3	2.5	4	3.3	17.3	11
7	GE	4.7	0.8	1.3	2.8	2.3	3.4	15.2	15
8	E-GAS	4.1	0.8	1.2	3	2.5	3.5	15.1	17
9	E-STR	1.8	1.2	3.5	3	3.3	3	15.9	14
10	GTI	1.4	1	2.8	3	3.5	2	13.7	19
11	HT-L	3.7	0	1	3	2.7	2	12.3	20
12	MCSG	4	0	1	3	2	2	12	21
13	OSEG	3.3	0	1.3	3	2	2	11.7	22
14	TPRI	3	1	3.7	3.5	3.3	2	16.5	12
15	U-GAS	3.4	2.4	3.8	3.1	3.1	3.5	19.4	7
16	HTW	3.3	3.2	3.7	2.8	3.1	3.7	19.8	6
17	TRIG	3	2.6	4.6	3.4	3.1	3.7	20.3	5
18	AFB	2.3	2	3.1	3.2	2.9	2.8	16.2	13
19	KRW	1.7	1.3	3.7	3	3.5	2	15.2	16
20	BGL	3.9	3.9	4.8	3.3	3.8	3.3	23	3
21	Lurgi	4.9	5	4.9	3.8	2.1	4	24.6	1
22	SEDIN	5	4.5	4.7	5	2	3	24.2	2

EERC. | UND NORTH DAKOTA

Nine Systems Selected for Further Study

		Non-slaggi A Slagging E	Vendor Air Liquid Envirothern Sinopec/EQ	Efficiency Rank 8 1 2	Cost Rank	Sodium Rank 1 2	Vendor Responsiv eness Rank 7 8	Commerci al Deployme nts Rank 1 4	Average Rank 3.8 3.6 2.2	New Ranking 4 3	
TRIC	G Fluid Bed	Non-slaggi K	KBR/South	3	8	8	6	8	6.6	8	
HTV U-G		Non-slaggi T Agglomerat S		6 5	4	7	4	6 5	5.4	6 5	
SCC			Shell	4	7	3			3.6	2	
Pren		20 0	ThyssenKri	7	6	5		7	5.8	7	
Final Four Systems											
Name	Syst	em T	Гуре	e	Ash		Vendor				
BGL	Fix	ked b	ed	S	lage	ging		Env	iroth	nerm	
SE	Entra	ained	flov	w S	lage	ging	Si	nop	ec/E	CUS	ST
U-GAS		uid be			Agglo				SES		
SCGP	Entra	ained		M S	lage	nna			Shel		

DETAILS OF SELECTED SYSTEMS

 The team is working with vendors and partners of the gasification technology to develop pre-FEED-type data on each system with North Dakota lignite and integrated with the Allam Cycle.

Gasifier Name	System Type	Ash	Vendor	Pre-FEED Partner	Status
BGL	Fixed bed	Slagging	Envirotherm	University of Freiberg	Proposal received, working on contract
SE	Entrained flow	Slagging	Sinopec/ECUST	ECUST	Contract nearly finalized
U-GAS	Fluid bed	Agglom.	SES	Jacobs Engineering	Waiting for proposal
SCGP	Entrained flow	Slagging	Shell	Shell Global Solutions	Working on NDA

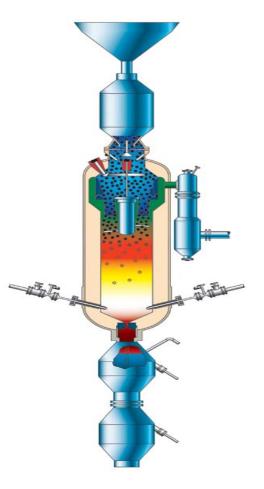
KEY PROCESS INFORMATION

- Process block diagrams and equipment arrangement
- Auxiliary power, oxygen, and utility requirements
- Process flow diagrams (P&ID)
- Operating conditions of coal drying, gasifier, and treatment areas

Critical Challenges.

Practical Solutions.

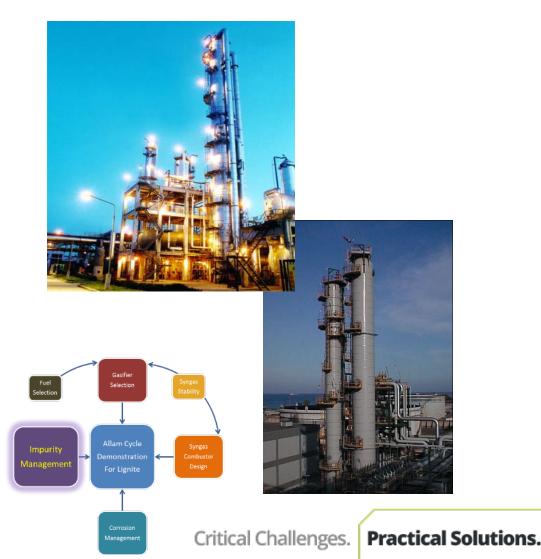
- Stream data
- Start-up and partial load
- Cold-gas efficiency
- Start-up fuels
- Overall Allam Cycle integration


SUMMARY OF VENDOR DATA

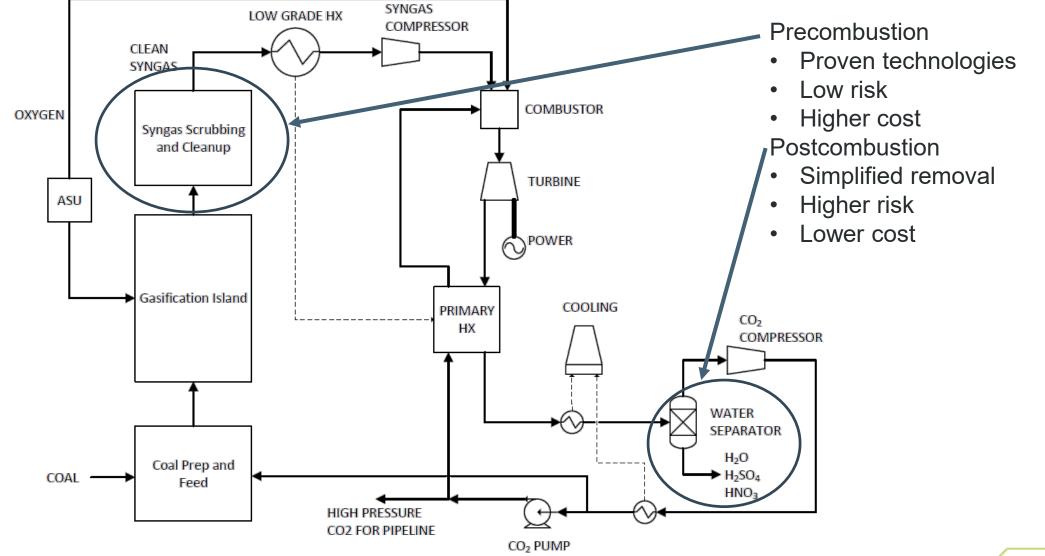
Gasification Technology	SE (ECUST)	BGL	SES SGT
Overall Allam Cycle Efficiency, HHV	39.6%	39.0%	40.3%
Design Output, MW (thermal)	500	500	583
Gasifier Units, trains required	2	3	1
Gasifier type	Entrained flow, slagging	Fixed-bed,	Fluid bed, agglomerated
V 1	00 0	slagging	ayyiomerated
Syngas Flow (after cleanup), kg/h	165,818	144,910	
Gasifier Operating Pressure, bar	40	43	
Gasifier Operating Temperature, °C	1300	717	
Syngas Composition at Outlet, dry basis			
H ₂	27.5%	24.9%	32.8%
CO	65.2%	58.2%	30.3%
CO ₂	6.1%	6.0%	27.2%
$H_2\bar{S}$	0.5%	0.6%	0.5%
CŌS	0.04%	0.02%	0.01%
CH ₄	0.05%	8.5%	8.5%
$N_2 + Ar$	0.5%	0.9%	0.4%
N T N N I N I V E R S I T N D			

GASIFIER SELECTION – FINAL LIST

- Finalizing studies for all three vendors.
 - SE gasifier entrained flow study complete.
 - \$113M capital costs
 - Two gasifiers
 - BGL gasifier fixed bed Freiberg study complete.
 - \$218M capital costs
 - Three gasifiers
 - Higher methane content in syngas
 - SES gasifier fluid bed study complete
 - \$188M capital costs
 - One gasifier


Practical Solutions.

IMPURITY REMOVAL


IMPURITY MANAGEMENT

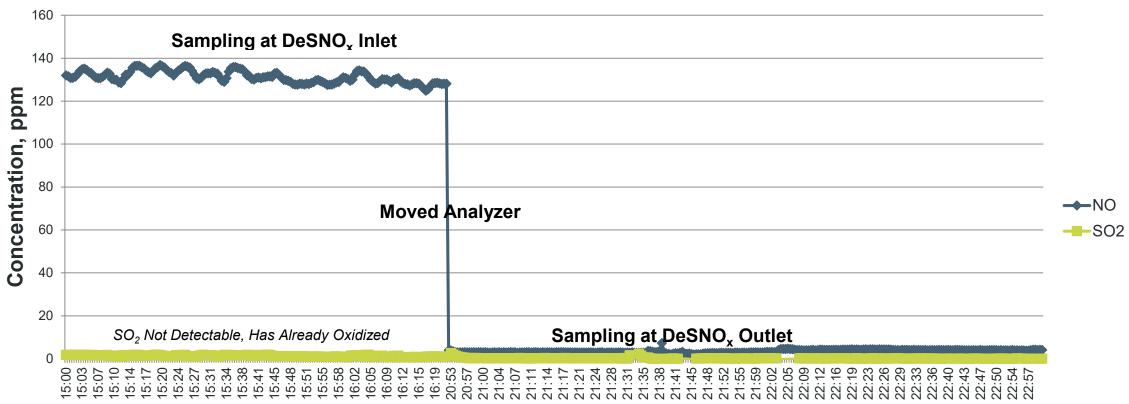
- Optimize and select economically viable nearcommercial technologies to support the removal of impurities.
- The Allam Cycle lends itself to cost-effective postcombustion removal.
- Precombustion technologies are commercially available.
- The team reviewed options for both technical fit in the process and commercial readiness.

IMPURITY MANAGEMENT

SULFUR REMOVAL CHEMISTRY FOR DESNO_X POSTCOMBUSTION TECHNOLOGY

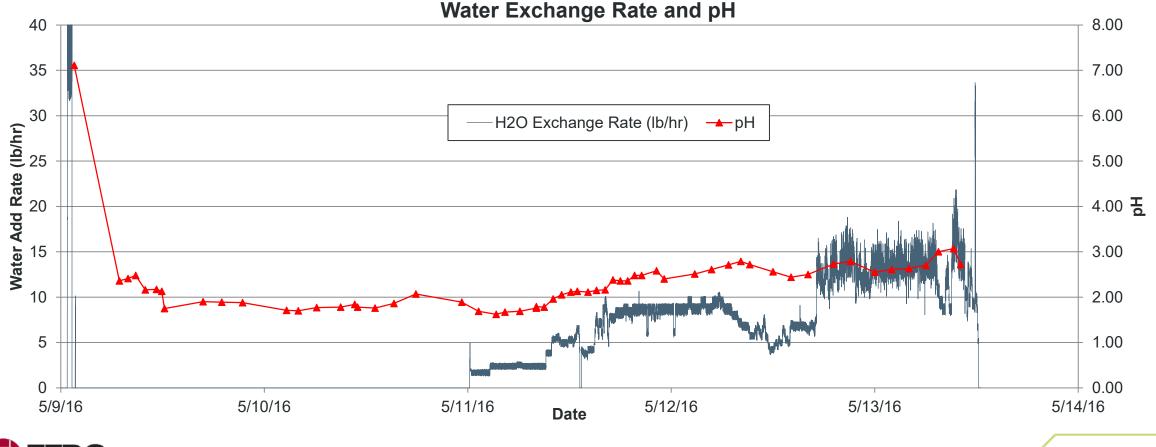
- DeSNO_x postcombustion removal under pressure (>15 bar)
 - 2NO + O₂ \leftrightarrow 2NO₂
 - $\text{NO}_2 + \text{SO}_2 \rightarrow \text{SO}_3 + \text{NO}$
 - $SO_3 + H_2O \rightarrow H_2SO_4$
 - $2NO_2 \leftrightarrow N_2O_4$
 - $3NO_2 + H_2O \leftrightarrow 2HNO_3 + NO$
 - $\text{ N}_2\text{O}_4 + \text{H}_2\text{O} \leftrightarrow \text{HNO}_2 + \text{HNO}_3$
 - 2 HNO₂ \leftrightarrow NO + NO₂ + H₂O

KEY FINDINGS – IMPURITY REMOVAL


- Initial testing of the 8 Rivers $DeSNO_x$ process.
- Existing equipment at the EERC was used to generate an Allam Cycle flue gas from lignite coal and to test the process.
- The DeSNO_x process uses only water in a packed spray column to remove sulfur and nitrogen species through oxidation reactions.
- Test results show that high levels of SO_x and NO_x removal have been achieved:
 - SO_x: >99% removal
 - NO_x: ~95% removal

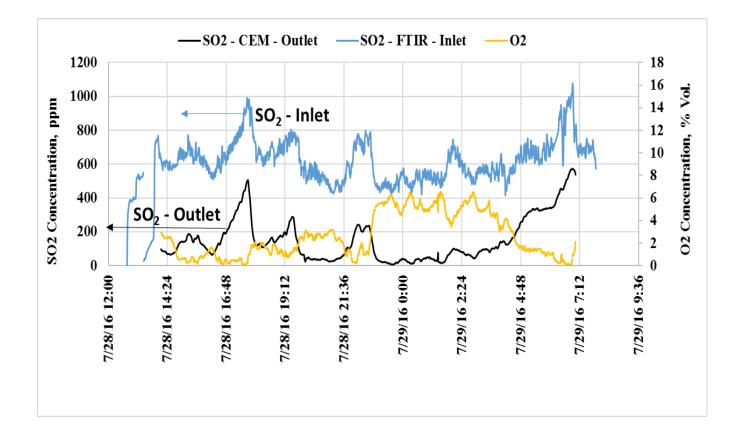
DESNO_X PERFORMANCE

NO and SO₂ Concentration on 5/9/16



Time

DESNO_X OPTIMIZATION


- The pH in the process drops as NO_x and SO_x form nitric and sulfuric acid.
- The EERC is developing data to maintain pH around 3, which will help to ensure consistent removal.

DESNO_X TEST RESULTS FROM SYNGAS OXY-COMBUSTION IN EFG

- Very little NO formation in oxyfired EFG because of limited syngas firing rate.
- SO_2 removal highly dependent on excess O_2 in flue gas.
- Need better control of SO₂ and NO concentrations in oxy-fired flue gas to better understand DeSNO_x process, especially at low excess O₂ concentrations.

FACTORIAL TEST IMPURITY MANAGEMENT

	Low	Middle	High
NO _x	15	37.5	50
O ₂	.5	2.75	5
RT	20	40	60

NOx	O ₂	RT	Notes
Low	Low	Low	Factorial Point
High	Low	Low	Factorial Point
Low	High	Low	Factorial Point
High	High	Low	Factorial Point
Low	Low	High	Factorial Point
High	Low	High	Factorial Point
Low	High	High	Factorial Point
High	High	High	Factorial Point
Middle	Middle	Middle	Center Point
Middle	Middle	Middle	Center Point
Middle	Middle	Middle	Center Point

IMPURITY MANAGEMENT – SUMMARY

• Sulfur removal highly dependent on residence time.

- >99% of sulfur can be removed with adequate residence time.
 - Approximately 40 seconds of residence time was sufficient.
- NO_x removal is dependent on oxygen concentration.
 - 90% of NO_x is removed if oxygen levels are 5%.
 - With low oxygen concentration, about 50% of NO_x removal is expected.
- Under nominal Allam Cycle conditions, 99% of sulfur and 50% of NO_x removal are expected.

COST ESTIMATION

INTRODUCTION

- The team of the Energy & Environmental Research Center (EERC) and 8 Rivers Capital (8RC) has contracted Jacobs Engineering (Jacobs) to develop a conceptual design for a commercial-scale Allam Cycle coal system.
- The focus of the study is to develop the definition of the coal gasification-specific portions of the flowsheet and to prepare overall Class IV CAPEX and levelized cost of electricity (LCOE) estimates.

Critical Challenges.

Practical Solutions.

- Stage 1 Technology Screening
- Stage 2 Conceptual Design
- Stage 3 Plant Cost Estimation

CASE STUDIES

- Case 1 SES SGT Gasification
 - Fluid-bed gasifier technology provided by Synthesis Energy Systems (SES).
 - Commercial technology that has several deployments in China; however, 4000 tons/day single train unit has not been commercially deployed yet.
 - Technology originally developed by GTI.
 - Uses a Selexol unit for sulfur removal.
- Case 2 ECUST SE Gasification
 - Entrained-flow gasifier technology provided by Sinopec-ECUST.
 - Hundreds of commercial deployments of the slurry-fed gasifier in China, with a few commercial deployments of the dry feed system.
 - Technology originally developed by East China University of Science and Technology (ECUST).

Critical Challenges.

Practical Solutions.

- Uses an amine solvent for sulfur removal.

CAPEX METHODOLOGY

- Combination of unit capacity factoring, equipment factoring, and budget quotes from licensers/vendors.
- CAPEX accuracy commensurate with a Class IV estimate.
- Base estimate developed on a U.S. Gulf Coast (USGC) basis, fourth quarter 2017.
- USGC costs updated for a Beulah, ND, site accounting for efficiency factors, local wage rates, and winterization costs.
- Greenfield plant location but excludes owner costs.

CAPEX (MM\$)	Case 1	Case 2
North Dakota	1,485	1,373
US Gulf Coast	1,115	1,031 7

Note: The Case 2 CAPEX estimate is based on costs for the gasification island provided by the Licensor, ECUST. Jacobs was not able to verify that cost as its basis, scope, assumptions, and exclusions were not provided to Jacobs. For the purpose of the LCOE calculation the CAPEX value for Case 2 was adjusted to allow for the ECUST SE gasifier.

OPEX METHODOLOGY

- Fixed costs
 - Operating labor
 - General and administrative
 - Maintenance
 - Property taxes
 - Insurance
- Variable costs
 - Feedstock
 - Utilities
 - Catalyst and chemicals
 - Waste disposal

OPEX (MM\$/year)	Case 1	Case 2
North Dakota	58.8	53.6°
US Gulf Coast	43.7	39.8°

LEVELIZED COST OF ELECTRICITY

- CAPEX and OPEX values reported
- Income tax assumed flat rate of 20%
- Nth of a kind facility interest rate
- CO₂ sold for 10\$/t
- Project start 2018, start-up 2021

Case 1	Case 2
\$/MWh	\$/MWh
83.4	103.6

Where:

- It = Investment cost in year t
- Mt = Maintenance and operational costs in year t

LCOF =

t=1

Σn

t=1

- F_t= Fuel costs in year t
- Rt = non-electricity revenue in year t
- Et = Energy generated in year t
- r = Return on equity
- n = Plant life in years

 $I_t + M_t + F_t - R_t$

(1+r)^t

Et

(1+r)^t

CONCEPTUAL COST

- Based on a 250-MWe system:
 - Case 1-SES Gasifier.
 - Case 2-SE Gasifier.
- Updated CO₂ sensitivity:
 - SES
 - No CO₂ sales, LCOE = \$91.50.
 - ♦ \$50/ston CO₂ sales, LCOE = \$50.90.
 - SE
 - No CO_2 sales, LCOE = \$111.
 - \$50/ston CO₂ sales, LCOE = \$70.30.

		Case 1 \$/MWh	Case 2 \$/MWh
CO ₂ net back price (Base = \$10/ST)			
1	\$8/ST	85.0	105.3
2	\$13/ST	81.0	101.1
Long term interest rate (Base = 7%pa)			
3	12%pa	96.6	120.2
CAPEX change			
4	+ 25%	102.0	127.0
5	- 25%	64.8	80.2
OPEX Change			
6	+25%	85.4	105.9
7	- 25%	81.4	101.4
Change of location basis			
8	USGC	63.5	76.5
<u> </u>			

Critical Challenges. Pra

Practical Solutions.

LARGE PILOT

SITE AND SCOPE

- Team has chosen a 5-MW demonstration scale.
- Three locations currently being considered:
 - Great Plains Synfuels Plant, Dakota Gasification Company (DGC)
 - EERC
 - NETPower Allam Cycle demonstration site, La Porte, Texas

POSSIBLE DGC LOCATIONS

EERC OPTION

- A 5-MW system could be housed in the EERC's Fuels of the Future facility or TRDU tower.
- Team is currently evaluating high-level needs to determine how this could be implemented.

CURRENT NET POWER SITE

Critical Challenges. Pra

LARGE PILOT – FUTURE WORK

- Work will continue on the development of a host site for a large pilot-scale demonstration:
 - Site selection by late fall 2018
 - Detailed cost estimate for selected site
 - Completion of Environmental Information Volume
 - Development of project team
- Phase II application to be submitted by March 31, 2019.

CONTACT INFORMATION

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5114 (phone) 701.777.5181 (fax)

Jason Laumb Principal Engineer Advanced Energy Systems Group Lead jlaumb@undeerc.org

