Reducing Contingency-based Windfarm Curtailments through use of Transmission Capacity Forecasting

Doug Bowman
Southwest Power Pool

Jack McCall
Lindsey Manufacturing Co.

Minnesota Power Systems Conference
St Paul, MN
November 6-7, 2018
Background

• Within SPP is the 159.1 MW “Grand” windfarm
 • Output travels through 2 outlet transmission paths
The Need for Curtailment

- Wind Integration Study showed with normal conditions and N-1 limits, one or the other line would become overloaded.

- To address these situations, up to 48.7 MW (~30%) of Grand’s power production must be curtailed.
Initial Solution

• In the first three months after the curtailments were ordered, over 50,000MWh were curtailed.
 • Loss of over $1 million in revenue
 • Loss of over $1 million in production tax credits

• Grand’s owner: this “hurts us, our off-taker and the market efficiency”

• Remedial Action Scheme (RAS) requested be put in place to reduce curtailments
Proposed Fast Reaction RAS Scheme

- Monitor the three N-1 lines (PCC-H, PCC-N, N-S)
- For any trip, immediately curtail 49.7MW of capacity
- SPP ensured the scheme would have minimal likelihood of mis-operation and had no unintended consequences.
Approach Summary

• The Preemptive Order and the Reactive RAS did the same thing...

• Used curtailment to address N-1 conditions caused by:
 • Fixed capacity line capacity ratings, during
Approach Summary

• The Preemptive Order and the Reactive RAS did the same thing...

• Used curtailment to address N-1 conditions caused by:
 • Fixed capacity line capacity ratings, during
 • Periods of high wind farm output, resulting from
Approach Summary

• The Preemptive Order and the Reactive RAS did the same thing...

• Used curtailment to address N-1 conditions caused by:
 • Fixed capacity line capacity ratings, during
 • Periods of high wind farm output, resulting from
 • Windy conditions
Approach Summary

• The Preemptive Order and the Reactive RAS did the same thing...

• Used curtailment to address N-1 conditions caused by:
 • Fixed capacity line capacity ratings, during
 • Periods of high wind farm output, resulting from
 • Windy conditions

Is there another way?
What limits line rating?

Clearance to Ground
• A line is not safe unless clearance is maintained
• Compliance requirements

Conductor Temperature
• Overheating leads to weakening and loss of life
• Premature replacement

What effects these parameters?
Weather.
- Line ratings (static) are based on conservative weather conditions
- **Seasonal Adjusted Ratings** and **Ambient Adjusted Ratings** recognize weather related effects on line capacity
 - Both adjust only on ambient temperature
• Line ratings (static) are based on conservative weather conditions

• **Seasonal Adjusted Ratings** and **Ambient Adjusted Ratings** recognize weather related effects on line capacity
 • Both adjust only on ambient temperature

• Wind has MUCH more impact than ambient
 • +2 mph wind ≅ 15°F change
Dynamic Line Rating

Decades of studies show +10-25% capacity availability 95% of the time

BUT, DLR

- Changes rapidly
- Changes erratically
- Is Real-time
Dynamic Line Rating

Decades of studies show +10-25% capacity availability 95% of the time

BUT, DLR
• Changes rapidly
• Changes erratically
• Is Real-time

Use of real-time DLR is operationally difficult.

What is my next DLR rating?
Dynamic Line Rating

Decades of studies show +10-25% capacity availability 95% of the time

BUT, DLR
• Changes rapidly
• Changes erratically
• Is Real-time
Dynamic Line Rating

Like a map app in a traffic jam...
Dynamic Line Rating

Like a map app in a traffic jam...

Highly accurate but useless. ...Real-time is too slow
Generation is FORECAST because it varies

Load is FORECAST because it varies
Generation is FORECAST because it varies.

Yet transmission capacity is generally assumed as fixed.

Load is FORECAST because it varies.
Transmission Capacity Forecasting

What is it?

• An advanced statistical process that provides:
 • Forecasts of transmission line capacity from 1-hour to 1-week ahead
 • Very high (98% or greater) confidence factors
 • Local line measurements avoids weather-only errors

• Can provide direct EMS input

• Combines:
 • Learning-based conductor behavior models
 • Continuous Forecasting
Transmission Capacity Forecasting

SMARTLINE-TCF

<table>
<thead>
<tr>
<th>Load</th>
<th>Real-time DLR</th>
<th>2-hour Capacity Forecast</th>
<th>24-hour Capacity Forecast</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 MVA</td>
<td>244 MVA</td>
<td>193 MVA</td>
<td>184 MVA</td>
<td>2017-08-04</td>
<td>20:00:00</td>
</tr>
</tbody>
</table>

![Graph showing ratings and load over time](image-url)
Is It Windy Enough for TCF to Work?

- The worse case line needs **147.4% of Static** to avoid any curtailment.
- All lines are perpendicular to prevailing wind pattern, maximizing cooling effect
- **Lowest Monthly Ave Wind** is 3.3m/sec
- **Ave Annual Wind Speed** is 6.8 m/sec
- **3.0 m/sec** (6.7mph) ground wind speed delivers **150% of line static rating**
- Analysis shows **9.6 m/sec ground wind speed** is needed to produce max wind farm output
TCF with Pre-Emptive Curtailment

A. Develop 36-hour ahead forecast of line capacities
 • Provides for 24-hour day ahead operation
 • Additional 12 hours for market setting and clearing activities

B. Take day ahead forecasted wind farm output to forecast flows on lines of concern during N-1

C. If $A < B$, then order pre-emptive curtailment

D. Alternatively, order a lower level curtailment to match A and B
Supervising RAS Curtailment with TCF

Recall the RAS was to curtail within cycles of line trip

A. Develop **4-hour** ahead forecast of line capacities

B. Take day ahead forecasted wind farm output to forecast flows on lines of concern during N-1

• If A>B, then **INHIBIT** curtailment IF an N-1 event occurs
• Refresh signals periodically to continue to inhibit or allow curtailment to be issued.

Supervision of RAS by TCF Forecast

- Compute N-1 Overload MVA
- 4-Hour TCF forecast MVA
- A>B?
- True if N-1 active
- Refresh signal every 60 minutes

Activate RAS
Enhancing RAS Curtailment with TCF

Recall the RAS was to curtail within cycles of line trip.

C. Develop 6-hour ahead forecast of line capacities
 • Check if A is close to the forecast flows on lines of concern during N-1
 • If $A \approx B$, then pre-emptively reduce wind farm output so that $A > B$ to avoid initiating the instantaneous RAS curtailment in the event of a N-1 event

Supervision and Tapering of RAS by TCF Forecast

Refresh signal every 60 minutes
Who Pays | Who Benefits

<table>
<thead>
<tr>
<th>Who Pays</th>
<th>Financial Benefit</th>
<th>Operational Benefit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
<td>• If NITS, None</td>
<td>Enhancement to asset capabilities</td>
<td>Possible addition to rate base</td>
</tr>
<tr>
<td></td>
<td>• If not, transmission revenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTO</td>
<td>None; Not able to pay</td>
<td>• Great situational awareness</td>
<td>Must socialize cost if RTO orders the installation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More flexibility in power export</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Less congestion</td>
<td></td>
</tr>
<tr>
<td>WF</td>
<td>• Energy sales</td>
<td>Less wear and tear on equipment due to curtailment</td>
<td>Must negotiate with TO to install and operate to forecasted levels</td>
</tr>
<tr>
<td></td>
<td>• PTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- TCF systems can effectively address transmission constraints that result in wind farm curtailment
 - Can supplant and/or enhance traditional curtailment methods
- Allocating costs of deploying and integrating TCF systems is not well defined
- TCF systems, once installed, provide additional operation benefits to wind farm operators, TOs and RTOs
 - Changes fixed transmission assets to dynamic